51 research outputs found

    L-selectin regulates human neutrophil transendothelial migration

    Get PDF
    The migration of circulating neutrophils towards damage/infected tissue is absolutely critical to the inflammatory response. L-selectin is a cell adhesion molecule abundantly expressed on circulating neutrophils. For over two decades, neutrophil L-selectin has been assigned the exclusive role of supporting tethering and rolling - the initial stages of the multi-step adhesion cascade. Here, we provide direct evidence for L-selectin contributing to neutrophil transendothelial migration (TEM). We show that L-selectin co-clusters with PECAM-1 - a well-characterised cell adhesion molecule involved in regulating neutrophil TEM. This co-clustering behaviour occurs specifically during TEM, which serves to augment ectodomain shedding of L-selectin and expedite the time taken for TEM (TTT) to complete. Blocking PECAM-1 signalling (through mutation of its cytoplasmic tail), PECAM-1-dependent adhesion, or L-selectin shedding, led to a significant delay in the TTT. Finally, we show that co-clustering of L-selectin with PECAM-1 occurs specifically across TNF-α- but not IL-1β-activated endothelial monolayers - implying unique adhesion interactomes forming in a cytokine-specific manner. To our knowledge, this is the first report to implicate a non-canonical role for L-selectin in regulating neutrophil TEM

    Cell Dispersal Influences Tumor Heterogeneity and Introduces a Bias in NGS Data Interpretation

    Get PDF
    Short and long distance cell dispersal can have a marked effect on tumor structure, high cellular motility could lead to faster cell mixing and lower observable intratumor heterogeneity. Here we evaluated a model for cell mixing that investigates how short-range dispersal and cell turnover will account for mutational proportions. We show that cancer cells can penetrate neighboring and distinct areas in a matter of days. In next generation sequencing runs, higher proportions of a given cell line generated frequencies with higher precision, while mixtures with lower amounts of each cell line had lower precision manifesting in higher standard deviations. When multiple cell lines were co-cultured, cellular movement altered observed mutation frequency by up to 18.5%. We propose that some of the shared mutations detected at low allele frequencies represent highly motile clones that appear in multiple regions of a tumor owing to dispersion throughout the tumor. In brief, cell movement will lead to a significant technical (sampling) bias when using next generation sequencing to determine clonal composition. A possible solution to this drawback would be to radically decrease detection thresholds and increase coverage in NGS analyses. © 2017 The Author(s)

    The present and future of serum diagnostic tests for testicular germ cell tumours.

    Get PDF
    Testicular germ cell tumours (GCTs) are the most common malignancy occurring in young adult men and the incidence of these tumours is increasing. Current research priorities in this field include improving overall survival for patients classified as being 'poor-risk' and reducing late effects of treatment for patients classified as 'good-risk'. Testicular GCTs are broadly classified into seminomas and nonseminomatous GCTs (NSGCTs). The conventional serum protein tumour markers α-fetoprotein (AFP), human chorionic gonadotrophin (hCG) and lactate dehydrogenase (LDH) show some utility in the management of testicular malignant GCT. However, AFP and hCG display limited sensitivity and specificity, being indicative of yolk sac tumour (AFP) and choriocarcinoma or syncytiotrophoblast (hCG) subtypes. Furthermore, LDH is a very nonspecific biomarker. Consequently, seminomas and NSGCTs comprising a pure embryonal carcinoma subtype are generally negative for these conventional markers. As a result, novel universal biomarkers for testicular malignant GCTs are required. MicroRNAs are short, non-protein-coding RNAs that show much general promise as biomarkers. MicroRNAs from two 'clusters', miR-371-373 and miR-302-367, are overexpressed in all malignant GCTs, regardless of age (adult or paediatric), site (gonadal or extragonadal) and subtype (seminomas, yolk sac tumours or embryonal carcinomas). A panel of four circulating microRNAs from these two clusters (miR-371a-3p, miR-372-3p, miR-373-3p and miR-367-3p) is highly sensitive and specific for the diagnosis of malignant GCT, including seminoma and embryonal carcinoma. In the future, circulating microRNAs might be useful in diagnosis, disease monitoring and prognostication of malignant testicular GCTs, which might also reduce reliance on serial CT scanning. For translation into clinical practice, important practical considerations now need addressing.The authors would like to acknowledge grant funding from CwCUK/GOSHCC (M.J.M. N.C. grant W1058), SPARKS (M.J.M. N.C. grant 11CAM01), CRUK (N.C. grant A13080) MRC (M.J.M. grant MC_EX_G0800464) and National Health Service funding to the Royal Marsden/Institute of Cancer Research National Institute for Health Research Biomedical Research Centre for Cancer (R.A.H.). The authors also thank the Max Williamson Fund, the Josh Carrick Foundation and The Perse Preparatory School, Cambridge for support.This is the author accepted manuscript. The final version is available fromNature Publishing Group via https://doi.org/10.1038/nrurol.2016.17

    The Shedding of CD62L (L-Selectin) Regulates the Acquisition of Lytic Activity in Human Tumor Reactive T Lymphocytes

    Get PDF
    CD62L/L-selectin is a marker found on naïve T cells and further distinguishes central memory (Tcm, CD62L+) from effector memory (Tem, CD62L−) T cells. The regulation of CD62L plays a pivotal role in controlling the traffic of T lymphocytes to and from peripheral lymph nodes. CD62L is shed from the cell membrane following T cell activation, however, the physiological significance of this event remains to be elucidated. In this study, we utilized in vitro generated anti-tumor antigen T cells and melanoma lines as a model to evaluate the dynamics of CD62L shedding and expression of CD107a as a marker of lytic activity. Upon encounter, with matched tumor lines, antigen reactive T cells rapidly lose CD62L expression and this was associated with the acquisition of CD107a. By CD62L ELISA, we confirmed that this transition was mediated by the shedding of CD62L when T cells encountered specific tumor antigen. The introduction of a shedding resistant mutant of CD62L into the tumor antigen-reactive T cell line JKF6 impaired CD107a acquisition following antigen recognition and this was correlated with decreased lytic activity as measured by 51Cr release assays. The linkage of the shedding of CD62L from the surface of anti-tumor T cells and acquisition of lytic activity, suggests a new function for CD62L in T cell effector functions and anti-tumor activity

    New high-risk molecular subtypes of DLBCL identified

    No full text

    Metabolic rewiring in mutant Kras lung cancer

    No full text
    Lung cancer is the leading cause of cancer-related death worldwide, reflecting an unfortunate combination of very high prevalence and low survival rates, as most cases are diagnosed at advanced stages when treatment efficacy is limited. Lung cancer comprises several disease groups with non small cell lung cancer (NSCLC) accounting for ~ 85% of cases and lung adenocarcinoma being its most frequent histological subtype. Mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) affect ~ 30% of lung adenocarcinomas but unlike other commonly altered proteins (EGFR and ALK, affected in ~ 14% and 7% of cases respectively), mutant KRAS remains untargetable. Therapeutic strategies that rely instead on the inhibition of mutant KRAS functional output or the targeting of mutant KRAS cellular dependencies (i.e. synthetic lethality) are an appealing alternative approach. Recent studies focused on the metabolic properties of mutant KRAS lung tumours have uncovered unique metabolic features that can potentially be exploited therapeutically. We review these findings here with a particular focus on in vivo, physiologic, mutant KRAS activity
    corecore